BARYCENTRE

I. Définition

1. Barycentre de 2 points

Propriété et définition : Étant donnés deux points A et B et deux réels α et β tels que $\alpha + \beta \neq 0$, Il existe un unique point G tel que $\alpha \overline{GA} + \beta \overline{GB} = \overline{0}$. On appelle ce point G barycentre des points pondérés (A, α) et (B, β) .

2. Généralisation

Le barycentre G d'un ensemble de n points pondérés (A_i, α_i) tel que $\sum_{i=1}^n \alpha_i \neq 0$

est l'unique point tel que $\sum_{i=1}^{n} \alpha_i \overrightarrow{GA}_i = \overrightarrow{0}$.

Remarque: Si tous les coefficients sont égaux on parle d'isobarycentre.

II. Propriétés.

1. Propriété fondamentale

Si G est le barycentre d'un ensemble de n points pondérés (A_i, α_i) , alors pour tout point M on a $\sum_{i=1}^{n} \alpha_i \overline{MA}_i = (\sum_{i=1}^{n} \alpha_i) \overline{MG}$.

- 2. Le barycentre ne change pas si on multiplie ou on divise les coefficients par un même nombre non nul.
- 3. Le barycentre de deux points A et B appartient à la droite (AB).

III.Associativité

On peut remplacer une partie des points d'un ensemble par leur barycentre affecté de la somme des coefficients de ces points sans changer le barycentre de l'ensemble.

Exemple: Si G est le barycentre des points (A,4), (B,-3) et (C,2) et H celui des points (A,4) et (B,-3), alors G est aussi le barycentre des points (H,1) et (C,2).

IV. Coordonnées

Les coordonnées du barycentre G de n points pondérés $(A_i(x_i; y_i), \alpha_i)$ sont

$$x_G = \frac{1}{S} \sum_{i=1}^{n} \alpha_i x_i \text{ et } y_G = \frac{1}{S} \sum_{i=1}^{n} \alpha_i y_i \text{ où } S = \sum_{i=1}^{n} \alpha_i.$$