SUITES

I. Généralités

1. Définition

Une suite numérique est une succession de nombres réels appelés termes. Le terme de rang n d'une suite u se note u_n , la suite elle-même se note u, (u_n) ou $(u_n)_{n\in\mathbb{N}}$.

2. Suite définie par une formule explicite

On peut définir une suite avec une formule qui donne chaque terme en fonction de son rang.

Exemples:

Si
$$(u_n)_{n \in \mathbb{N}}$$
 est telle que $u_n = 2n - 3$ on a $u_0 = 2 \times 0 - 3 = -3$ puis $u_1 = -1$ etc...

Si
$$(v_n)_{n \in \mathbb{N}^*}$$
 est telle que $v_n = \frac{2^n}{n}$ on a $v_1 = \frac{2^1}{1} = 2$ puis $v_2 = \frac{2^2}{2} = 2$, $v_3 = \frac{2^3}{3} = \frac{8}{3}$ etc...

3. Suite définie par récurrence

On peut définir une suite en donnant le premier (ou les premiers) terme(s) puis une formule donnant un terme en fonction du (ou des) précédent(s).

Exemples:

Si
$$u_0 = 2$$
 et $u_{n+1} = u_n - 5$, on a $u_1 = u_0 - 5 = 2 - 5 = -3$ puis $u_2 = -3 - 5 = -8$ etc...

Si
$$v_0 = 1$$
, $v_1 = 1$ et $v_{n+2} = v_{n+1} + v_n$, on a $v_2 = v_1 + v_0 = 2$ puis $v_3 = v_2 + v_1 = 3$ etc...

II. Variations

1. Suite croissante

Une suite u est croissante (resp strictement croissante) si pour tout n, $u_{n+1} \ge u_n$ (resp $u_{n+1} > u_n$).

2. Suite décroissante

Une suite u est décroissante (resp strictement décroissante) si pour tout n, $u_{n+1} \le u_n$ (resp $u_{n+1} < u_n$).

3. Suite monotone

Une suite toujours croissante ou toujours décroissante est dite monotone.

Remarque : Étudier le sens de variation d'une suite revient à étudier le signe de

$$u_{n+1}-u_n$$
, ou, si $u_n > 0$, étudier si $\frac{u_{n+1}}{u_n} \ge 1$.

III.Suite arithmétique

- 1. Une suite arithmétique de raison r est une suite telle que pour tout n, $u_{n+1} = u_n + r$. dans ce cas on a aussi $u_n = u_0 + n \times r$.
- 2. Une suite arithmétique est monotone, croissante si sa raison est positive, décroissante si elle est négative et constante si elle est nulle.
- 3. Somme des termes

Si
$$(u_n)$$
 est une suite arithmétique, $\sum_{i=0}^{i=n} u_i = \frac{u_0 + u_n}{2} \times (n+1)$. On a en particulier

$$\sum_{i=1}^{i=n} i = \frac{n(n+1)}{2}$$

Remarque : la première formule se résume par :

$$\frac{\text{premier terme} + \text{dernier terme}}{2} \times \text{nombre de termes} \ .$$

IV. Suite géométrique

- 1. Une suite géométrique de raison q est une suite telle que pour tout n, $u_{n+1}=u_n\times q$. dans ce cas on a aussi $u_n=u_0\times q^n$.
- 2. Une suite géométrique u est monotone si sa raison q est positive. Elle est croissante si $u_0 > 0$ et q > 1 ou si $u_0 < 0$ et 0 < q < 1. Elle est décroissante si $u_0 > 0$ et 0 < q < 1 ou si $u_0 < 0$ et q > 1. Elle est constante si q = 1.
- 3. Somme des termes

Si
$$(u_n)$$
 est une suite géométrique de raison q , $\sum_{i=0}^{i=n} u_i = u_0 \frac{1-q^{n+1}}{1-q}$. En particulier,

$$\sum_{i=0}^{i=n} q^{n} = \frac{1-q^{n+1}}{1-q}.$$