Devoir surveillé n°5

Exercice 1 (4 points)

- 1. Dans chaque cas, calculer le nombre dérivé en a de la fonction f en utilisant la définition ($\lim_{h \to 0} \cdots$).
 - définition $(\lim_{h\to 0} \cdots)$. a. $f(x) = \frac{-2}{x-5}$; a=4
 - b. $f(x) = \sqrt{x+1}$; a = 0
- 2. Vérifier les résultats précédents en calculant la fonction dérivée

Exercice 2 (3 points)

Calculer la fonction dérivée des fonctions suivantes :

- 1. $f_1: x \to -3x^2 + 5x 9$
- $2. \quad f_2: x \to \frac{\sqrt{x}}{x}$
- 3. $f_3: x \rightarrow \sin x \cos x$

Exercice 3 (3 points)

- 1. Déterminer un approximation affine de la fonction f définie par $f(x) = \frac{x-1}{x^2+3}$ pour des valeurs de x proches de 1.
- 2. Calculer une approximation de f(0,998) à l'aide de la fonction déterminée à la question précédente. On donnera un ordre de grandeur de l'erreur commise.

Exercice 4 (5 points)

ABC est un triangle tel que $\overrightarrow{AB}=4$, $\overrightarrow{AC}=2$ et \overrightarrow{AB} . $\overrightarrow{AC}=6$, k est un réel et les point \overrightarrow{E} et \overrightarrow{F} sont tels que $\overrightarrow{AE}=k\overrightarrow{AB}$ et $\overrightarrow{AF}=k\overrightarrow{AC}$.

- 1. Calculer une valeur approchée de l'angle \widehat{BAC} puis faire une figure. (Laisser de la place derrière B et C)
- 2. Déterminer pour quelle(s) valeur(s) de k les droites (CE) et (BF) sont perpendiculaires. Compléter la figure avec la(les) valeur(s) trouvée(s).

Exercice 5 (5 points)

ABC est un triangle tel que AB=7, AC=5 et $BC=\sqrt{39}$. La bissectrice de \widehat{BAC} coupe [BC] en D et la bissectrice de \widehat{ACB} coupe [AB] en E.

- 1. Faire une figure.
- 2. Calculer \widehat{BAD} puis des valeurs approchées de \widehat{ABC} et \widehat{ADB} .
- 3. En déduire une valeur approchée de BD.
- 4. Déterminer des valeurs approchées de BE puis de DE

(On prendra des valeurs approchées à 10^{-1} près en degrés pour les angles, à 10^{-2} près pour les longueurs et à 10^{-3} près pour les lignes trigonométriques)

D.M pour le mercredi 20 janvier : exercice $n^{\circ}40 p : 92$