corrigé du devoir surveillé n°4

Exercice 1

$$\frac{2x+1}{x-1} + \frac{3}{x+1} < 6 \Leftrightarrow \frac{(2x+1)(x+1)+3(x-1)}{(x+1)(x-1)} < \frac{6(x+1)(x-1)}{(x+1)(x-1)} \Leftrightarrow \frac{2x^2+3x+1+3x-3}{(x+1)(x-1)} < \frac{6(x^2-1)}{(x+1)(x-1)} < \frac{-4x^2+6x+4}{(x+1)(x-1)} < 0 \Leftrightarrow \frac{2x^2-3x-2}{(x+1)(x-1)} > 0$$

pour
$$2x^2-3x-2$$
, $\Delta=9+16=25$ puis $x_1=\frac{3-5}{4}=-\frac{1}{2}$ et $x_2=\frac{3+5}{4}=2$. On a donc

x	$-\infty$		-1		$-\frac{1}{2}$		1		2		$+\infty$
$2x^2 - 3x + 2$		+		+	0	_		_	0	+	
x-1		_		_		_	0	+		+	
<i>x</i> +1		_	0	+		+		+		+	
Q		+		_	0	+		_	0	+	

Donc
$$S =]-\infty; -1[\cup] - \frac{1}{2}; 1[\cup]2; +\infty[$$

Exercice 2

notons v la vitesse moyenne sur la première partie. Le temps mis pour la première partie est donc $\frac{160}{v}$

. Sur la deuxième partie, la vitesse moyenne est v-40 et le temps mis est donc $\frac{40}{v-40}$. On a donc

$$\frac{160}{v} + \frac{40}{v - 40} = 3 \iff 160(v - 40) + 40v = 3v(v - 40) \iff -3v^2 - 320v - 6400 = 0 \text{ Cette équation a deux}$$

solutions,
$$x_1 = \frac{-320 - 160}{-6} = 80$$
 et $x_2 = \frac{-320 + 160}{-6} = \frac{80}{3}$. Or la seconde valeur donne une vitesse

négative sur la seconde partie du trajet donc la valeur cherchée est v=80. La vitesse moyenne était donc de $80 \, \mathrm{kmh}^{-1}$ sur la première partie et de $40 \, \mathrm{kmh}^{-1}$ sur la seconde.

Exercice 3

1.
$$\vec{w} \cdot \vec{u} = (\vec{u} - \vec{v}) \cdot \vec{u} = \vec{u}^2 - \vec{v} \cdot \vec{u} = 2^2 - (-7) = 11$$
 et
$$\vec{w}^2 = (\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2 = 2^2 - 2 \times (-7) + 5^2 = 43$$
.

2.
$$\vec{w} \cdot \vec{u} = |\vec{w}| \times |\vec{u}| \times \cos(\vec{w}, \vec{u})$$
 donc $\cos(\vec{w}, \vec{u}) = \frac{\vec{w} \cdot \vec{u}}{|\vec{w}| \times |\vec{u}|} = \frac{11}{2\sqrt{43}} \approx 0.839$. Donc $(\vec{w}, \vec{u}) \approx 33^{\circ}$

Exercice 4

1. Voir ci-contre

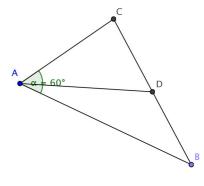
$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos(\overline{AB}, \overline{AC})$$

2. =25+9-2×5×3×cos
$$\frac{\pi}{3}$$
=19

Donc
$$BC = \sqrt{19}$$
.

$$AB^2 + AC^2 = 2AI^2 + \frac{1}{2}BC^2$$
. Donc

$$2AI^2 = AB^2 + AC^2 - \frac{1}{2}BC^2 = 25 + 9 - \frac{19}{2} = \frac{49}{2}$$
 puis $AI^2 = \frac{49}{4}$ donc $AI = \frac{3}{2}$



Exercice 5

- 1. $x^2+y^2-10x+4y-20=0 \Leftrightarrow (x-5)^2-25+(y+2)^2-4-20=0 \Leftrightarrow (x-5)^2+(y+2)^2=49$. Si on pose M(x;y) et $\Omega(5;-2)$, l'équation devient $OM^2=7^2 \Leftrightarrow OM=7$. C est donc le cercle de centre $\Omega(5;-2)$ et de rayon 7.
- 2. Il s'agit de résoudre le système $\begin{cases} x^2 + y^2 10x + 4y 20 = 0 \\ 2x + y 15 = 0 \end{cases}$. La seconde équation donne y = -2x + 15 et par substitution dans la première on obtient :

et par substitution dans la première on obtient :

$$x^2 + (-2x+15)^2 - 10x + 4(-2x+15) - 20 = 0 \Leftrightarrow 5x^2 - 78x + 265$$
.

Pour cette équation on trouve $\Delta = 784$ puis $x_1 = 5$ et $x_2 = \frac{106}{10}$ Ce qui donne A(5;5) et

$$B(\frac{106}{10}; -\frac{31}{5})$$
.

- 3. $(-2)^2 + (-2)^2 10 \times (-2) + 4 \times (-2) 20 = 0$ donc $D \in C$.
- 5. $\overrightarrow{DA} \cdot \overrightarrow{DB} = ||\overrightarrow{DA}|| \times ||\overrightarrow{DB}|| \times \cos(\overrightarrow{DA}, \overrightarrow{DB}) \text{ donc}$ $\cos(\overrightarrow{DA}, \overrightarrow{DB}) = \frac{\overrightarrow{DA} \cdot \overrightarrow{DB}}{||\overrightarrow{DA}|| \times ||\overrightarrow{DB}||} = \frac{58.8}{7\sqrt{2} \times 6\sqrt{4.9}} = \frac{\sqrt{5}}{5} \approx 0,447.$

Donc $(\overrightarrow{DA}, \overrightarrow{DB}) \approx -63.4^{\circ}$.

6. L'aire de ADB est $\frac{1}{2}DA \times DB \sin \widehat{ADB}$. Or $\sin^2 \widehat{ADC} + \cos^2 \widehat{ADC} = 1$ donc $\sin \widehat{ADC} = \frac{2\sqrt{5}}{5}$. Donc $A_{ADC} = \frac{1}{2} \times 7\sqrt{2} \times 6\sqrt{4,9} \times \frac{2\sqrt{5}}{5} = 58.8$.

