Devoir surveillé n°3 (3 heures)

Exercice 1 (4 points)

Résoudre les équations suivantes :

a.
$$3x^2 - 5x - 2 = 0$$
.

b.
$$x^2 - x + 3 = 0$$
.

c.
$$-x^2+3x-4=0$$
.

d.
$$-4x^2+12x-9=0$$

Exercice 2 (2 points)

F est la fonction définie par $f(x) = -2x^2 + 8x - 1$

- 1. Mettre le trinôme $-2x^2+8x-1$ sous forme canonique.
- 2. En déduire par quelle transformation on passe de la courbe représentative de la fonction $x \rightarrow -2x^2$ à celle de f.
- 3. Représenter la fonction f dans un repère orthonormé.

Exercice 3 (3 points)

- 1. Exprimer $\sin(x+\frac{\pi}{6})$ et $\cos(x+\frac{\pi}{6})$ en fonction de $\sin x$ et $\cos x$.
- 2. Résoudre les équations suivantes dans $]-\pi;\pi]$

a.
$$\sqrt{3}\sin x + \cos x = 0$$

b.
$$\cos x - \frac{\sqrt{3}}{3} \sin x = 1$$

Exercice 4 (3.5 points)

- 1. ABC est un triangle équilatéral direct $((\overrightarrow{AB}, \overrightarrow{AC}) = +\frac{\pi}{3})$ de centre O dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$. On appelle (r, θ) les coordonnées polaires de A dans $(O, \overrightarrow{i}, \overrightarrow{j})$; Quelles sont les coordonnées polaire de B?
- 2. Exprimer les coordonnée cartésiennes de B en fonction de r et $\cos \theta$ et $\sin \theta$.
- 3. a. Si A a pour coordonnées cartésiennes (1;3). Déterminer les coordonnées cartésiennes de B.
 - b. Quelles peuvent être les coordonnées cartésiennes de A pour que r=2 et que B ait pour abscisse -1?

Exercice 5 (7.5 points)

Partie A Étude du réel $\lambda = 2\sin(\frac{\pi}{18})$

- 1. Montrer que $\sin(3\theta) = -4\sin^3\theta + 3\sin\theta$.
- 2. En déduire que $\sin(\frac{\pi}{18})$ est solution de l'équation $-8x^3+6x-1=0$.
- 3. Montrez que λ est solution de l'équation $x^3 3x + 1 = 0$.

Partie B Étude de la fonction $f: x \to x^3 - 3x + 1$

- 1. Montrez que la fonction f_1 définie par $f_1(x) = f(x) 1$ est impaire.
- 2. g est la fonction définie par g(x)=f(x-1). Exprimez g(x) (sous forme réduite).
- 3. Montrez que g est croissante sur $]-\infty;0]$. Que peut-on en déduire pour f?
- 4. Justifier en utilisant la question 1 que f est croissante sur $[1; +\infty[$.
- 5. Montrer que si on a $-1 \le x_1 < x_2 \le 1$ alors $f(x_2) f(x_1) \le 0$. En déduire que f est décroissante sur [-1;1] et donner son tableau de variation.
- 6. Quel est le nombre de solutions de l'équation f(x)=0? Donner un encadrement d'amplitude 10^{-2} de chacune des solutions.
- 7. En déduire une valeur approchée de λ à 10^{-2} près.