Devoir surveillé n°8 (3 heures)

Exercice 1 (4 points)

Soit g et h les fonctions définies respectivement sur $\mathbb{R} \setminus \{-3\}$ et sur \mathbb{R}^* par :

$$g(x) = \frac{2x+3}{x+3}$$
 et $h(x) = -\frac{3}{x}$.

On note C_g et C_h leurs courbes représentatives respectives dans le repère orthonormal (O, \vec{i}, \vec{j}) donné en annexe (figure 1).

- 1. a) Démontrer que h est impaire. Interpréter graphiquement ce résultat.
 - b) Donner en le justifiant le tableau de variations de la fonction h.
 - c) Construire dans le repère (O, \vec{i}, \vec{j}) en annexe la courbe C_h , en utilisant la courbe d'équation $y = \frac{1}{x}$ donnée (figure 1).
- 2. a) Vérifier que $g=u\circ h\circ v$, où u et v sont deux fonctions affines de pente égale à 1 que l'on précisera.
 - b) En déduire que C_g est l'image de C_h par une transformation géométrique que l'on précisera.
 - c) En déduire le tableau de variations de g.
- 3. Construire la courbe C_g dans le repère (O, \vec{i}, \vec{j}) en annexe.

Exercice 2 (2 points)

Déterminer les réels a, b et c pour que la fonction f définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ ait les propriétés suivantes :

- f(0)=3.
- f'(0)=2.
- f admet un maximum égal à 4.

Exercice 3 (5 points)

On se place dans un repère orthonormal $(O,\vec{i},\vec{j},\vec{k})$. d_1 est la droite passant par A(-1;1;2) et de vecteur directeur $\vec{u}(1;1;-1)$ et d_2 la droite passant par B(-1;0;4) et de vecteur directeur $\vec{v}(-1;1;0)$.

- 1. Montrer que les droites d_1 et d_2 ne sont pas coplanaires.
- 2. k et k' étant deux réels, on note M le point de d_1 tel que $\overline{AM} = k\vec{u}$ et N celui de d_2 tel que $\overline{BN} = k'\vec{v}$. Montrer que $MN^2 = 3(k+1)^2 + 2(k'-\frac{1}{2})^2 + \frac{3}{2}$.
- 3. En déduire les valeurs k_0 et k'_0 de k et k' pour lesquelles la distance MN et minimale. On note M_0 et N_0 les points correspondants.
- 4. Montrer que la droite (M_0N_0) est perpendiculaire à d_1 et à d_2 .

Exercice 4 (4 points)

Dans cet exercice, les tracés seront effectués sur l'annexe au dos (figure 2).

ABCDEFGH est un cube. M est un point du segment [AD], N un point du segment [EF] et P point du segment [CG]. Le but de l'exercice est de tracer la section du cube par le plan (MNP) (C'est-à-dire l'intersection des faces du cube avec la plan (MNP)).

- 1. On appelle I l'intersection de la droite (DP) et du plan (EFG) et d_1 l'intersection des plans (DMP) et (EFG). Montrer que I est l'intersection des droites (DP) et (HG) puis que d_1 est la parallèle à (AD) passant par I, la construire.
- 2. Montrez que (MP) et d_1 sont sécantes, on appelle J leur point d'intersection. Construire l'intersection K des droites (NJ) et (FG).
- 3. Justifiez que les segments [NK] et [KP] sont des éléments de la section cherchée puis achever le sa construction (On ne demande pas de justifications ici).

Exercice 5 (5 points)

Un octet est un nombre binaire formé de 8 bits, c'est-à-dire de huit chiffres 0 ou 1, comme par exemple 10001101 (qui est égal à 141).

- 1. Combien y-a-t-il d'octets différents?
- 2. On choisit un octet au hasard, calculer la probabilité des événements suivants :
 - A « L'octet ne contient que des 1 »
 - B « L'octet commence par trois 0 »
 - C « L'octet contient exactement deux 1 »
- 3. On appelle X la variable aléatoire correspondant au nombre de 1 dans l'octet choisi.
 - a. Déterminer la loi de probabilité de X.
 - b. Calculer l'espérance et l'écart type de X (Le détail des calculs n'est pas indispensable).

ANNEXE

Nom:

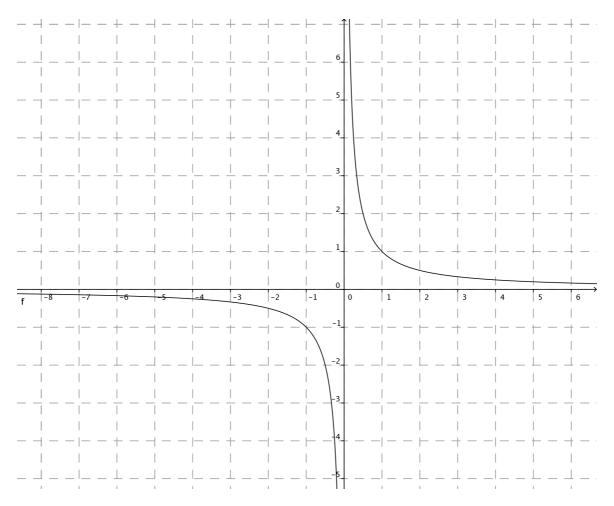


figure 1

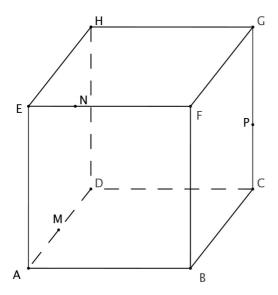


figure 2