corrigé du devoir surveillé n°9

Exercice 1

- 1. a. (u_n) est arithmétique donc $u_n = u_0 + nr$ donc $u_0 + 5r = 3$ et $u_0 + 15r = -27$. On a donc 10r = -27 3 donc r = -3 puis $u_0 = 3 5 \times (-3) = 18$ et $u_{20} = 18 + 20 \times (-3) = -42$.
 - b. (u_n) est arithmétique donc $u_n=u_0+nr$ donc $u_0+10\,r=-52$ et $u_0+41\,r=-145$. On a donc $31\,r=-145-(-52)$ donc r=-3 puis $u_0=-52-10\times(-3)=-22$ et $u_{20}=-22+20\times(-3)=-82$.
- 2. a. (u_n) est géométrique donc $u_n = u_0 \times q^n$ donc $u_0 \times q^3 = -15$ et $u_0 \times q^7 = -1215$. On a donc $\frac{u_0 \times q^7}{u_0 \times q^3} = \frac{-1215}{-15} \iff q^4 = 81 \text{ donc } q = 3 \text{ ou } q = -3 \text{ . } q = 3 \text{ donne } u_0 = \frac{-15}{3^3} = -\frac{5}{9} \text{ puis}$ $u_{20} = -\frac{5}{9} \times 3^{20} = -1937102145 \text{ . } q = -3 \text{ donne } u_0 = \frac{-15}{(-3)^3} = \frac{5}{9} \text{ puis } u_{20} = 1937102145 \text{ .}$
 - b. (u_n) est géométrique donc $u_n = u_0 \times q^n$ donc $u_0 \times q^7 = -1$ et $u_0 \times q^{10} = 8$. On a donc $\frac{u_0 \times q^{10}}{u_0 \times q^7} = \frac{8}{-1} \Leftrightarrow q^3 = -8$ donc q = -2. On a alors $u_0 = \frac{-1}{(-2)^7} = \frac{1}{128}$ puis $u_{20} = \frac{1}{128} \times (-2)^{20} = 2^{13} = 8192$.

Exercice 2

- 1. $d_0=1$, $d_1=\sqrt{1+d_0^2}=\sqrt{1+1^2}=\sqrt{2}$ et $d_2=\sqrt{1+d_1^2}=\sqrt{1+2}=\sqrt{3}$.
- 2. $d_1 d_0 = \sqrt{2} 1 \approx 0.41$ et $d_2 d_1 = \sqrt{3} \sqrt{2} \approx 0.32$ donc $d_2 d_1 \neq d_1 d_0$ et (d_n) n'est pas arithmétique. $\frac{d_1}{d_2} = \sqrt{2} \approx 1.41$ et $\frac{d_2}{d_1} = \frac{\sqrt{3}}{\sqrt{2}} \approx 1.22$ donc $\frac{d_2}{d_1} \neq \frac{d_1}{d_0}$ et (d_n) n'est pas géométrique.
- $\frac{1}{d_0} = \sqrt{2} \approx 1.41$ et $\frac{1}{d_1} = \frac{1}{\sqrt{2}} \approx 1.22$ donc $\frac{1}{d_1} \neq \frac{1}{d_0}$ et (d_n) n'est pas géométrique.
- 3. Pour tout n, $u_{n+1}=d_{n+1}^2=\sqrt{1+d_n^2}^2=1+d_n^2=1+u_n$. Donc (u_n) est une suite arithmétique de raison 1. On a donc $u_n=u_0+n\times 1=1+n$. Or $u_n=d_n^2$ et $d_n\ge 0$ pour tout n donc $d_n=\sqrt{u_n}=\sqrt{1+n}$.
- 4. Quel que soit n, n < n+1 donc $\sqrt{n} < \sqrt{n+1}$ c'est-à-dire $\sqrt{n} < d_n$. De plus, $n \ge 2 \Rightarrow n^2 \ge 2n \ge n+1$ donc $\sqrt{n+1} \le n$. On a donc bien $\sqrt{n} \le d_n \le n$. Pour tout nombre A, $n > A^2 \Rightarrow \sqrt{n} > A$ donc \sqrt{n} tend vers $+\infty$ quand n tend vers $+\infty$. Or $d_n > \sqrt{n}$ donc d_n tend vers $+\infty$ quand n tend vers $+\infty$.