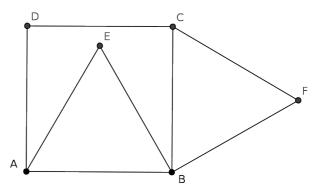
Devoir surveillé n°9

(2 heures)

Exercice 1 (8 points)


On considère la fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par : $f(x) = \frac{x^2 + x - 2}{x + 1}$ on appelle C_f sa courbe représentative dans un repère orthonormé d'unité 2 cm.

- 1. Étudier les variations de la fonction f.
- 2. a. Déterminer les réels a, b et c tels que pour tout $x \neq -1$, $f(x) = ax + b + \frac{c}{x+1}$. b. On appelle Δ la droite d'équation y = ax + b. Déterminer, en fonction de x, si C_f est au-dessus ou en dessous de Δ .
- 3. Montrer que pour tout x non nul, $\frac{f(-1+x)+f(-1-x)}{2}=-1$. Que peut-on en déduire pour la courbe C_f ?
- 4. Soit A(-2;0) . Déterminer une équation de la droite T , tangente à C_f au point A .
- 5. Construire C_f , Δ et T.

Exercice 2 (4 points)

Sur la figure ci-contre, ABCD est un carré direct et ABE et BFC sont des triangles équilatéraux directs.

- 1. Déterminer une mesure des angles $(\overline{DF}, \overline{DC})$ et $(\overline{DA}, \overline{DE})$.
- 2. En déduire que les points D, E et F sont alignés.

Exercice 3 (4 points)

a est un réel tel que $a \in [0; \frac{\pi}{2}]$ et $\cos a = \frac{1}{3}$ et b est un réel tel que $b \in [\frac{\pi}{2}; \pi]$ et $\sin b = \frac{\sqrt{5}}{3}$. Déterminer $\sin a$, $\cos b$, $\cos (a+b)$ et $\sin (a-b)$.

Exercice 4 (4 points)

Résoudre les équations suivantes dans $[0; 2\pi[$:

1.
$$\sin(x + \frac{\pi}{6}) = \cos x$$

$$2. \quad \cos(2x) = \frac{3}{2}\cos x$$

(On pourra être amené à utiliser le changement de variable $X = \cos x$)