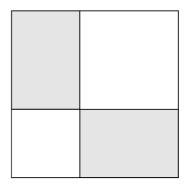
D.S. n°2	Mathématiques	1 ^{ère} S
Durée: 2 h	Second degré, géométrie plane et trigonométrie	Mardi 08 novembre 2011

Exercice 1: Q.C.M. (2 points)

Indiquez la bonne réponse (attention, +0,5 pt par bonne réponse et -0,25 par mauvaise)

1) La forme canonique du trinôme $2x^2-4x+3$ est :	a) $2(x-1)^2+3$	b) $2(x-1)^2+1$	c) $2(x-1)^2+2$
2) Les courbes d'équation $y=-2x^2+3x+1$ et $y=2x+1$ ont :	a) 2 points d'intersection	b) 1 point d'intersection	c) aucun point d'intersection
3) L'ensemble des solutions de l'inéquation $2x^2+1>0$ est :	a) IR	b) Ø	c)]0 ;+∞[
4) Le discriminent du trinôme x^2 – 5 est :	a) 25	b) 29	c) 20

Exercice 2 : Équations et inéquations (Cadeau!) (6 points)


- 1. Résoudre dans les équations suivantes :
 - a) $x^2 5x = 0$.
 - b) $x^2+4=2x$.
 - c) $(x-1)(x^2-3x+2)=0$.
 - d) $x^3 x^2 6x = 0$.
- 2. Résoudre dans \mathbb{R} les inéquations suivantes :
 - a) $x^2 + 2 < 0$.
 - b) $4x^2 2x + \frac{1}{4} > 0$.
 - c) $x^3 + 2x^2 < -x$.

Exercice 3 (2,5 points)

Résoudre l'équation suivante : $4x^4+5x^2-9=0$ (On pourra utiliser un changement de variable)

Exercice 4 (2,5 points)

On a recouvert une surface de petits carreaux blancs et gris de sorte à obtenir le motif suivant : (deux carré blancs et deux rectangles gris similaires).

Sachant que le coté du grand carré blanc comprend 8 carreaux de plus que celui du petit et que l'on a en tout utilisé 1000 carreaux blancs, déterminer le nombre de carreaux gris utilisés.

Exercice 5 (5,5 points)

Dans le plan muni d'un repère $(O; \vec{i}; \vec{j})$ on a les points A(1;3), B(6;4) et C(-1;-1). Le but de l'exercice est de calculer les coordonnées du centre de gravité G du triangle ABC.

A. Première méthode

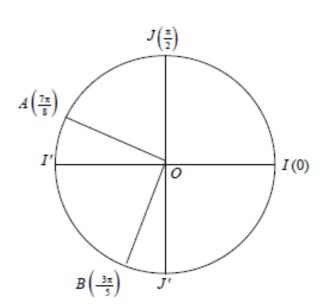
- 1. Calculer les coordonnées des milieux respectifs I et J des segments [BC] et [AC].
- 2. En déduire les équations cartésiennes des médianes issues de A et de B du triangle ABC.
- 3. Calculer les coordonnées du du centre de gravité G du triangle ABC.

B. deuxième méthode

- 1. Exprimer le vecteur \overrightarrow{AG} en fonction de \overrightarrow{AI} où I est le milieu de [BC].
- 2. En déduire une expression de \overrightarrow{AG} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. En déduire les coordonnées de G.

Exercice 6 (1,5 points)

Sur un cercle trigonométrique C, on considère les


points A et B tels que:

$$(\overrightarrow{OI}, \overrightarrow{OA}) = \frac{7\pi}{8} \text{ et } (\overrightarrow{OI}, \overrightarrow{OB}) = -\frac{3\pi}{5}.$$

Déterminer la mesure principale des angles suivants :

$$(\overrightarrow{OI}, \overrightarrow{OA})$$
; $(\overrightarrow{OJ}, \overrightarrow{OB})$ et $(\overrightarrow{OB}, \overrightarrow{OA})$.

(on pourra utiliser la relation de Chasles).

