D.S. n°3	Mathématiques	1 ^{ère} S		
Durée: 2 h	Fonctions, géométrie plane et statistiques	Mardi 13 décembre 2011		

Exercice 1 (3 points)

1. On a relevé le taux de cholestérol dans le sang des employés d'un fastfood qui se nourrissent tous les jours des produits qu'ils vendent.

Voici les résultats :

Taux	[0,8;1,2[[1,2;1,6[[1,6;2[[2;2,4[[2,4;2,8[[2,8;3,2[[3,2;3,6[
Effectifs	1	1	9	7	8	8	6

Calculer le taux moyen de cholestérol de ces employés ainsi que l'écart type.

2. On a relevé le taux de cholestérol dans le sang des employés d'un restaurant gastronomique qui se nourrissent tous les jours du plat du jour qu'ils proposent.

Voici les résultats :

Taux	[0,8;1,2[[1,2;1,6[[1,6;2[[2;2,4[[2,4;2,8[[2,8;3,2[[3,2;3,6[
Effectifs	3	2	12	6	2	3	0

Calculer le taux moyen de cholestérol de ces employés ainsi que l'écart type.

3. Comparer les couples (moyenne ; écart type) de ces deux séries statistiques.

Exercice 2 (4 points)

Un appareil contrôle la longueur des vis fabriquées par une machine.

Il a relevé les longueurs suivantes en mm:

- 1. Calculer la médiane, le premier et le troisième quartile de cette série statistique.
- 2. Le statisticien J.-W. Tukey qualifiait d'aberrantes les valeurs d'une série statistique qui se situaient à

l'extérieur de l'intervalle
$$\left[Q_1 - \frac{3}{2}(Q_3 - Q1); Q_3 + \frac{3}{2}(Q_3 - Q1)\right]$$
.

Calculer les bornes de cet intervalle pour la série considérée.

3. En déduire les valeurs aberrantes de cette série statistique.

Exercice 3: (3 points)

Soit f et g deux fonctions définies sur \mathbb{R} par :

$$f(x) = x^2$$
 et $g(x) = -3x + 4$.

On appelle ${\bf P}$ et ${\bf D}$ leurs représentations graphiques respectives dans un repère (${\bf O}$; \vec{i} , \vec{j}).

- **1.** Étudier le signe de f(x) g(x) selon les valeurs de x.
- **2.** En déduire la position de **P** par rapport à **D**.

Exercice 4 : Avec deux valeurs absolues (4 points)

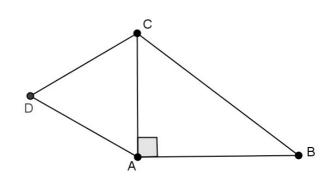
Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = |x - 3| + 2|x| - 4$$
.

- **1.** Exprimer f(x) sans le symbole de la valeur absolue.
- **2.** Dresser le tableau de variation de f puis tracer sa représenter graphique.
- **3.** Résoudre l'équation f(x) = 4.

Exercice 5: (3 points)

ABC est un triangle rectangle en *A* de sens direct, tel que: $(\overrightarrow{BA}, \overrightarrow{BC}) = -\frac{\pi}{6}$; et le triangle *ACD* est équilatéral de sens direct.


Donner en justifiant, la mesure principale des angles orientés:

1.
$$(\overrightarrow{AD}, \overrightarrow{AB})$$

2.
$$(\overrightarrow{DC}, \overrightarrow{AC})$$

3.
$$(\overrightarrow{DC}, \overrightarrow{BA})$$
 4. $(\overrightarrow{CA}, \overrightarrow{CB})$

4.
$$(\overrightarrow{CA}, \overrightarrow{CB})$$

Exercice 6: (3 points)

Soit *m* un nombre réel. On nomme d_m la droite d'équation : (2m-1)x - my + 3m + 1 = 0.

- **1. a.** La droite d_0 est la droite obtenue pour m = 0. Tracer la droite d_0 .
 - **b.** Tracer d_1 , d_2 et d_{-1} .
- **2.** Montrer que toutes les droites d_m passant un même point I dont on précisera les coordonnées.
- **3.** Existe-t-il des droites d_m
 - **a.** passant par le point A(-1; 4)?
 - **b.** de vecteur directeur $\vec{u}(2;-1)$