D.S. n°7	Mathématiques	1 ^{ère} S
Durée: 3 h	fonctions, dérivation, suites	24/04/12

Ce sujet est à traiter sur deux copies doubles:

- une pour les exercices 1, 2 et 3
- <u>une deuxième pour les exercices 4 et 5</u>

Exercice 1 (3 points)

Calculer les dérivées des fonctions

a)
$$f(x) = 3x^2 - 7x + 1$$
.

b)
$$q(x) = (2x + 1)(x^2 - 3x + 4)$$
.

c)
$$h(x) = (3x - 2)\sqrt{x}$$
.

d)
$$k(x) = \frac{x^2 + 4}{7x - 3}$$
.

Exercice 2 (4 points)

La fonction f est définie sur $\mathbb{R}\setminus\{1\}$ par $f(x) = \frac{3x^2 - 4x}{2(x-1)^2}$.

- **1.** Calculer f'(x) puis établir le tableau de variations de f.
- 2. Déterminer les équations des tangentes à la courbe (C_f) , représentative de f, aux points d'abscisses respectives 0 et $\frac{3}{2}$.
- **3.** Étudier la position de la courbe (C_f) par rapport à la droite d'équation $y = \frac{3}{2}$.
- **4.** Représenter (C_f) , les droites d'équations $y = \frac{3}{2}$ et x = 1 ainsi que les tangentes précédentes dans un repère orthonormal d'unité $1 \, cm$.
- 5. Soit D_m la droite d'équation y = 4x + m.

 Déterminer graphiquement, suivant les valeurs de m, le nombre de solutions de l'équation f(x) = 4x + m.

Exercice 3 (3 points)

- 1. Les réels suivants peuvent-ils être les termes consécutifs d'une suite géométrique ? Si oui, en donner la raison. $4\sqrt{3} + 3$; $3\sqrt{3} + 12$ et $12\sqrt{3} + 9$.
- **2.** (u_n) est une suite géométrique de raison 4 et de premier terme 17. Calculer: $u_0 + u_1 + ... + u_6$.
- **3.** Exprimer en fonction de *n* la somme $1 + \frac{5}{7} + \frac{5^2}{7^2} + ... + \frac{5^n}{7^n}$.

Exercice 4 (6 points)

On définit les suites
$$(a_n)$$
 et (b_n) par $a_0 = 1$, $b_0 = 7$ et
$$\begin{cases} a_{n+1} = & \frac{1}{3}(2a_n + b_n) \\ b_{n+1} = & \frac{1}{3}(a_n + 2b_n) \end{cases}.$$

Soit D une droite munie d'un repère $(O; \vec{i})$. Pour tout $n \in \mathbb{N}$, on considère les points A_n et B_n d'abscisses respectives a_n et b_n .

- 1. Placez les points A_0 , B_0 , A_1 , B_1 , A_2 et B_2 sur la droite D.
- **2.** Soit (u_n) la suite définie par $u_n = b_n a_n$ pour tout $n \in \mathbb{N}$.

Démontrez que (u_n) est une suite géométrique dont on précisera la raison et le premier terme.

Exprimez u_n en fonction de n. Que peut on dire du signe de u_n ?

- **3. a.** Montrer que pour tout $n \in \mathbb{N}$ on a : $a_n \le b_n$.
 - **b.** En déduire le sens de variation des suites (a_n) et (b_n) .
 - c. Interprétez géométriquement ces résultats.
- **4.** Soit (v_n) la suite définie par $v_n = a_n + b_n$ pour tout $n \in \mathbb{N}$.

Démontrez que (v_n) est une suite constante.

Justifier que les segments $[A_n B_n]$ ont tous le même milieu I.

5. Que peut on conjecturer sur la convergence des suites (a_n) et (b_n) ?

Interprétez géométriquement ce résultat.

Exercice 5 (4 points)

Le plan est muni d'un repère $(0; \vec{i}, \vec{j})$. On considère les points A (-4; -5), B(9; -4) et C (3; 6).

- 1. Faire une figure que l'on complétera au fur et à mesure.
- 2. Calculer les coordonnées des milieux respectifs I et J des segments [BC] et [AC].
- 3. En déduire des équations cartésiennes des médianes issues de A et de B du triangle ABC.
- **4.** Calculer les coordonnées du centre de gravité G du triangle ABC.
- **5.** Calculer \overrightarrow{AI} . \overrightarrow{BC} . Que peut-on en déduire pour le triangle ABC.

Exercice 6 (Bonus: 2 points)

Existe-t-il des tangentes communes aux courbes (C) et (C') d'équations respectives :

$$y = -1 + x^2$$
 et $y = \frac{1}{x}$.