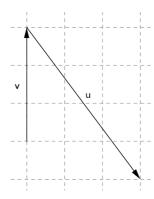
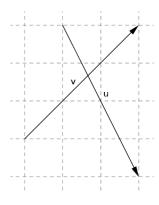

Évaluation n°5


Exercice 1 (4 points)

L'unité étant le coté d'un carreau, déterminer dans chaque cas le produit scalaire $\vec{u} \cdot \vec{v}$. (On détaillera le calcul, sans insister sur la démarche utilisée)


1.

2.

3.

Exercice 2 (3 points)

 \vec{u} et \vec{v} sont deux vecteurs tels que $||\vec{u}||=1$, $||\vec{v}||=\sqrt{2}$ et $\vec{u}.\vec{v}=\frac{4}{3}$. Calculer $(2\vec{u}-\vec{v}).(\vec{v}-\vec{u})$, que peut-on en déduire pour les vecteurs $2\vec{u}-\vec{v}$ et $\vec{v}-\vec{u}$?

Exercice 3 (3 points)

Les vecteur \vec{u} et \vec{v} vérifient $\|\vec{u}\| = 2$, $\|\vec{v}\| = \sqrt{3}$ et $\|\vec{u} + \vec{v}\| = \sqrt{7 + 2\sqrt{3}}$. Déterminer une mesure (positive et exacte) de l'angle (\vec{u}, \vec{v}) .

Exercice 4 (4 points)

ABC est un triangle isocèle rectangle en A tel que AB=5cm. I est le milieu de [AC].

- 1. Calculer \overrightarrow{BI} . \overrightarrow{BC} .
- 2. déterminer une valeur approchée à 10^{-1} degrés de la mesure de $\widehat{\it CBI}$.

Exercice 5 (6 points)

Dans un repère orthonormal, On a les points A(-2;-1), $B(\frac{3}{2};1)$ et $C(-\frac{3}{2};3)$.

- 1. Faire une figure.
- 2. Calculer les produits scalaires $\overrightarrow{BA} \cdot \overrightarrow{BC}$ et $\overrightarrow{CA} \cdot \overrightarrow{CB}$.
- 3. A l'aide de la question précédente, déterminer les coordonnées du point H, projeté orthogonal de A sur (BC). Quel est la nature du triangle ABC?
- 4. Calculer une valeur approchée à 10^{-1} degrés des angles du triangle ABC.