corrigé de l'évaluation n°1

Exercice 1

$$f:C_2$$
; $g:C_1$; $h:C_4$; $k:C_3$

Exercice 2

1. a. $x^2+8x+18 = x^2+8x+16-16+18 = (x+4)^2+2$.

b.
$$-3x^2 + 12x - 1 = -3(x^2 - 4x + 4 - 4 + \frac{1}{3}) = -3((x+2)^2 - \frac{11}{3}) = -3(x+2)^2 + 11$$
.

c.
$$x^2 - 5x = x^2 - \frac{2 \times 5}{2}x + \frac{25}{4} - \frac{25}{4} = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4}$$

2. a. $x^2+8x+18=(x+4)^2+2 \ge 2$ pour tout x, donc le trinôme n'a pas de racine et il ne se factorise pas.

b.
$$-3x^2 + 12x - 1 = -3((x+2)^2 - \frac{11}{3}) = -3(x+2 - \sqrt{\frac{11}{3}})(x+2 + \sqrt{\frac{11}{3}})$$
 donc le trinôme a deux racines, $x_1 = -2 - \sqrt{\frac{11}{3}}$ et $x_2 = -2 + \sqrt{\frac{11}{3}}$.

3. $x^2-5x = x(x-5)$ donc le trinôme a deux racines, 0 et 5.

Exercice 3

1. $x^2 + 3x - 4 = 0$

Le discriminant du trinôme x^2+3x-4 est $\Delta=3^2-4\times1\times(-4)=9+16=25$. Ses racines sont $x_1=\frac{-3-\sqrt{25}}{2}=-4$ et $x_2=\frac{-3+\sqrt{25}}{2}=1$ qui sont les solutions de l'équation.

2. $-5x^2+7x-4=0$

Le discriminant du trinôme $-5x^2+7x-4$ est $\Delta=7^2-4\times(-5)\times(-4)=49-80=-31$. $\Delta<0$ donc le trinôme n'a pas de racine et l'équation pas de solution.

3.
$$18x^2 - 24x + 8 = 0 \Leftrightarrow 9x^2 - 12x + 4 = 0 \Leftrightarrow (3x - 2)^2 = 0 \Leftrightarrow 3x - 2 = 0 \Leftrightarrow x = \frac{2}{3}$$

Exercice 4

1. $x^2 - 3x - 4 \le 0$

Le discriminant du trinôme x^2-3x-4 est $\Delta=(-3)^2-4\times1\times(-4)=9+16=25$. Ses racines sont $x_1=\frac{-(-3)-\sqrt{25}}{2}=-1$ et $x_2=\frac{-(-3)+\sqrt{25}}{2}=4$. 1>0 donc le trinôme est négatif entre ses racines et S=[-1;4].

2. $-4x^2 + 20x - 25 \ge 0 \Leftrightarrow 4x^2 - 20x + 25 \le 0 \Leftrightarrow (2x - 5)^2 \le 0$. Ce n'est possible que pour $2x - 5 = 0 \Leftrightarrow x = \frac{5}{2}$ qui est donc l'unique solution de cette inéquation.

Exercice 5

 $x^4 + 4x^2 - 5 = 0$: On pose $X = x^2$ et par suite, $x^4 + 4x^2 - 5 = 0 \Leftrightarrow X^2 + 4x - 5 = 0$. Pour le trinôme $X^2 + 4x - 5$, $\Delta = 36$, il a donc deux racines, $X_1 = -5$ et $X_2 = 1$.

On doit donc résoudre les équation $x^2 = -5$ qui n'a pas de solution et $x^2 = 1$ qui a deux solutions, $x_1 = 1$ et $x_2 = -1$. Donc S = [-1; 1].

Exercice 5

La première équation donne $y = \frac{13}{2} - x$ puis par substitution dans la seconde, on obtient

$$x(\frac{13}{2}-x) = 10 \iff x^2 - \frac{13}{2}x + 10 = 0$$
. Cette équation a deux solutions, $x_1 = \frac{5}{2}$ et $x_2 = 4$. Pour $x_1 = \frac{5}{2}$, on a $y_1 = \frac{13}{2} - \frac{5}{2} = 4$ et pour $x_2 = 4$, on a $y_2 = \frac{13}{2} - 4 = \frac{5}{2}$. Donc $S = \left\{ (\frac{5}{2}; 4); (4; \frac{5}{2}) \right\}$