### Évaluation n°8

#### Exercice 1 (7 points)

Soit ABCD, un carré de côté 4cm. On considère les points I et J tels que

$$\overrightarrow{DI} = \frac{3}{4}\overrightarrow{DC}$$
 et  $\overrightarrow{BJ} = \frac{1}{4}\overrightarrow{BC}$ .

- 1. Déterminer les valeurs de  $\overrightarrow{BC}$ .  $\overrightarrow{DC}$  et  $\overrightarrow{BA}$ .  $\overrightarrow{BC}$ . On justifiera brièvement.
- 2. Montrer que  $\overrightarrow{JB} \cdot \overrightarrow{JC} = -3$  et que  $\overrightarrow{BA} \cdot \overrightarrow{CI} = 4$ .
- 3. On veut calculer le produit scalaire  $\overrightarrow{JA} \cdot \overrightarrow{JI}$ .

  En introduisant avec la relation de Chasles le point B dans le vecteur  $\overrightarrow{JA}$  et le point C dans le vecteur  $\overrightarrow{JI}$ , montrer que  $\overrightarrow{JA} \cdot \overrightarrow{JI} = \overrightarrow{JB} \cdot \overrightarrow{JC} + \overrightarrow{BA} \cdot \overrightarrow{CI}$ .
- 4. En déduire la valeur de  $\overrightarrow{JA} \cdot \overrightarrow{JI}$ .

#### Exercice 2 (5 points)

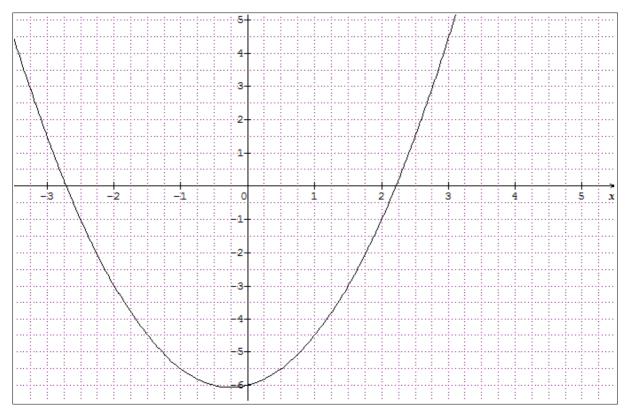
Dans un triangle ABC, on note AB = c, AC = b et BC = a. De plus, on a  $\widehat{ABC} = 60^{\circ}$ , b = 8cm et c = 9cm.

- 1. Faire une figure. Combien semble-t-il y avoir de cas possibles ?
- 2. Déterminer les valeurs possibles de  $\it a$  . On demande la valeur exacte puis l'arrondi à  $0.1\,cm$  .

## Exercice 3 (4 points)

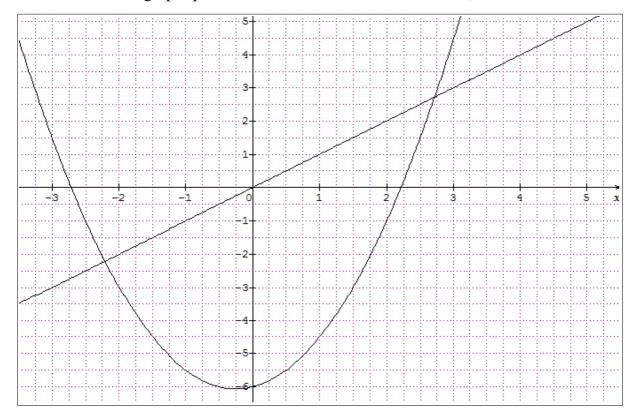
Dans chacun des cas suivants, déterminer les quatre premiers termes de la suite  $(u_n)_{n\in\mathbb{N}}$ .

- 1.  $(u_n)$  est la suite de terme général  $u_n = \frac{\sqrt{n+2}}{n+1}$
- 2.  $(u_n)$  est telle que  $u_0 = 12$  et pour tout  $n \ge 0$  ,  $u_{n+1} = \frac{1}{2}(u_n 4)$


# Exercice 4 (4 points)

On considère une fonction numérique f.

(Dans les deux cas, on laissera les traits e construction)


1. On considère la suite  $(u_n)$  définie par  $u_n = f(n)$ 

A l'aide du graphique ci-dessous, déterminer  $u_0$ ,  $u_1$ ,  $u_2$  et  $u_3$ .



2. On considère la suite  $(v_n)$  définie par  $v_0 = -2$  et  $v_{n+1} = f(v_n)$ 

A l'aide du graphique ci-dessous, déterminer  $v_1$ ,  $v_2$  et  $v_3$ .

