corrigé de du D.S. n°1

Exercice 1

- 1. Pour tout n, $n^2 + 5n + 4 = (n+1)(n+4)$ et $n^2 + 3n + 2 = (n+1)(n+2)$ donc $n^2 + 5n + 4$ et $n^2 + 3n + 2$ sont divisibles par n+1 pour tout entier n.
- 2. $(n+1)|3(n+1)^2$ donc $(n+1)|(3n^2+15n+19) \Leftrightarrow (n+1)|((3n^2+15n+19)-3(n+1)^2)$ c'est-à-dire, $(n+1)|(9n+16) \Leftrightarrow (n+1)|((9n+16)-9(n+1)) \Leftrightarrow (n+1)|7$. Or n est un entier naturel donc n+1=1 ou n+1=7 c'est-à-dire n=0 ou n=6.
- 3. Comme $(n+1)|(n^2+3n+2)$ alors $(n^2+3n+2)|(3n^2+15n+19) \Rightarrow (n+1)|(3n^2+15n+19)$. Or ce n'est possible que pour n=0 ou n=6. Pour n=0, $n^2+3n+2=2$ et $3n^2+15n+19=19$ donc $(n^2+3n+2)\nmid (3n^2+15n+19)$. De même pour n=6 puisque $56\nmid 217$. Il n'existe donc aucune valeur de n telle que $(n^2+3n+2)\nmid (3n^2+15n+19)$.

Exercice 2

 $35=2\times17+1$ donc $35\equiv1(17)$ et donc, $35^{121}\equiv1(17)$. $50=3\times17-1$ donc $50\equiv-1(17)$ et donc, $50^{251}\equiv(-1)^{251}(17)\equiv-1(17)$. Par suite :

 $8\times 35^{121} - 12\times 50^{251} \equiv (8\times 1 - 12\times (-1))(17) \equiv 20(17) \equiv 3(17) \text{ . Or } 0 \leq 3 < 17 \text{ donc le reste cherché est } 3 \text{ .}$

Exercice 3

- 1. 111=7*16-1 donc 111=-1(17) et 1000=7*143-1 donc 1000=-1(17).
- $2. \quad a = 999888777666555444333222111 = \sum_{i=1}^{9} 111 \times i \times 1000^{i-1} = 111 \times \sum_{i=1}^{9} i \times 1000^{i-1} \text{ donc} \\ a \equiv -1 \times \sum_{i=1}^{9} i \times (-1)^{(i-1)} (17) \equiv (-1) \times (1-2 + 3 4 + 5 6 + 7 8 + 9) (17) \equiv -5(7) \equiv 2(7) \text{ . Le reste cherché ici est donc } 2 \text{ .}$

 $b = 999888777666555444333222111 = 1000 a \text{ donc } b = (-1) \times a(17) = 5(17)$. Le reste cherché est 5.

 $111111=111\times 1000+111\ \ donc\ \ 111111\equiv ((-1)\times (-1)+(-1))(17)\equiv 0\ (17)\ .\ \ 111111\ \ est\ donc\ un$ multiple de $\ 17$. Comme $999999888888777777666666655555444444333333222222111111\ \ est\ un$ multiple de $\ 111111$, le reste cherché est donc $\ 0$.