Devoir surveillé n°2

On pourra utiliser dans ce problème les deux théorèmes suivants :

- Petit théorème de Fermat :
 - Si p est un nombre premier et si p ne divise pas a alors $a^{p-1} \equiv 1(p)$.
- Théorème de Gauss :
 - Si a|bc et si a et b sont premiers entre eux, alors a|c.

Partie A

On considère l'ensemble $A_7 = \{1; 2; 3; 4; 5; 6\}$

- 1. Pour tout élément a de A_7 écrire dans le tableau annexe figurant ci-dessous l'unique élément y de A_7 tel que a $y \equiv 1(7)$.
- 2. Pour x entier relatif, démontrer que l'équation $3x \equiv 5(7)$ équivaut à $x \equiv 4(7)$.
- 3. Si a est un élément de A_7 , montrer que les seuls entiers relatifs x solutions de l'équation $a x \equiv 0(7)$ sont les multiples de 7.

Partie B

Dans toute cette question, p est un nombre premier supérieur ou égal à 3. On considère l'ensemble $A_p = \{1; 2; ...; p-1\}$ des entiers naturels non nuls et strictement inférieurs à p. a est un élément de A_p .

- 1. Vérifier que a^{p-2} est une solution de l'équation $a x \equiv 1(p)$.
- 2. On note r le reste dans la division euclidienne de a^{p-2} par p. Démontrer que r est l'unique solution x dans A_p , de l'équation $a x \equiv 1(p)$.
- 3. Soient x et y deux entiers relatifs. Démontrer que $xy \equiv 0(p)$ si et seulement si x est un multiple de p où y est un multiple de p.
- 4. Application : p=31 . Résoudre dans A_{31} les équations : $2x\equiv 1(31)$ et $3x\equiv 1(31)$. À l'aide des résultats précédents, résoudre dans \mathbb{Z} l'équation $6x^2-5x+1\equiv 0(31)$.

Tableau annexe

а	1	2	3	4	5	6
у						6