Devoir surveillé n°3

Le plan complexe est rapporté à un repère orthonormal (O, \vec{u}, \vec{v}) ; unité graphique : 8 centimètres. On considère la transformation f du plan qui à tout point M d'affixe z associe le point M' d'affixe z' telle que $z' = \frac{\sqrt{2}}{4}(-1+i)z$.

- 1. Déterminer la nature et les éléments caractéristiques de la transformation f.
- 2. On définit la suite de points (M_n) de la façon suivante : M_0 est le point d'affixe $z_0=1$ et, pour tout nombre entier naturel n, $M_{n+1}=f(M_n)$. On note z_n l'affixe du point M_n .
 - a. Justifier que, pour tout nombre entier naturel n, $z_n = \left(\frac{1}{2}\right)^2 e^{i\left(\frac{3n\pi}{4}\right)}$
 - b. Construire les points M_0 , M_1 , M_2 , M_3 et M_4 .
- 3. Dans cette question, toute trace de recherche même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Soient n et p deux entiers naturels. À quelle condition sur n et p les points M_n et M_p sont-ils alignés avec l'origine O du repère ?