corrigé de du D.S. n°1

Exercice 1

- 1. 2n+1=2n-6+7=2(n-3)+7 donc $(n-3)|(2n+1)\Leftrightarrow (n-3)|(2(n-3)+7)$ or (n-3)|(n-3) donc $(n-3)|(2n+1)\Rightarrow (n-3)|(2(n-3)+7-2(n-3))\Leftrightarrow (n-3)|7$. Réciproquement, $(n-3)|7\Rightarrow (n-3)|(2(n-3)+7)$ donc $(n-3)|(2n+1)\Leftrightarrow (n-3)|7$. 7 est premier donc ses diviseurs sont -7; -1; 1 et 7 donc n-3=-7, n-3=-1, n-3=1 ou n-3=7. L'ensemble cherché est donc [-4;2;4;10].
- 2. $(n-2)(n+1)+5 = n^2-2n+n-2+5 = n^2-n+3$ donc $(n+1)|(n^2-n+3) \Leftrightarrow (n+1)|((n-2)(n+1)+5)$. or (n+1)|(n+1) donc $(n+1)|(n^2-n+3) \Rightarrow (n+1)|((n-2)(n+1)+5-(n-2)(n+1)) \Leftrightarrow (n+1)|5$. Réciproquement, $(n+1)|5 \Rightarrow (n+1)|((n-2)(n+1)+5)$ donc $(n-3)|(n^2-n+3) \Leftrightarrow (n-3)|5$. Ici n est un entier naturel, donc $n+1 \ge 1$. Les diviseurs positifs de $n+1 \ge 1$ ou $n+1 \ge 1$. L'ensemble cherché est donc $n+1 \ge 1$.
- 3. $\frac{3n+8}{n+4} = \frac{3(n+4)-4}{n+4} = 3 \frac{4}{n+4}$ donc, dire que la fraction $\frac{3n+8}{n+4}$ est un entier équivaut à dire que n+4 divise 4. Les diviseurs de 4 sont -4; -2; -1; 1; 2 et 4. L'ensemble cherché est donc [-8;-6;-5;-3;-2;0].

Exercice 2

Si d est un diviseur commun à a et à b, alors d|(6k+5) et d|(8k+3) donc $d|(4(6k+5)-3(8k+3)) \Leftrightarrow d|11$. or les seuls diviseurs positifs de 11 sont 1 et 11 donc a et b ont au plus deux diviseurs positifs communs.

Exercice 3

- Supposons n pair, alors n⁴ aussi est pair de même que 3n⁴ et 5n donc 3n⁴+5n est pair et 3n⁴+5n+1 est impair.
 Supposons n impair, alors n⁴ aussi est impair de même que 3n⁴ et 5n donc 3n⁴+5n est pair et 3n⁴+5n+1 est impair.
 Donc, quel que soit n, 3n⁴+5n+1 est impair.
- 2. n(n+1) est le produit d'un nombre pair et d'un nombre impair, donc c'est un nombre pair. Tout multiple d'un nombre pair est pair, or $3n^4+5n+1$ est impair, donc $3n^4+5n+1$ n'est pas multiple de n(n+1). C'est-à-dire, $n(n+1) \nmid (3n^4+5n+1)$.

Exercice 4

Le reste de la division euclidienne de a par b est 9 donc $a=b\,q+9$ (q étant le quotient de la division euclidienne de a par b). Par ailleurs, a+b=86 donc a=86-b et par suite $86-b=b\,q+9 \Leftrightarrow b\,q+b=77 \Leftrightarrow b\,(q+1)=77$. donc b|77. Or les diviseurs positifs de 77 sont 1, 7, 11 et 77. Comme b>9 (Le reste de la division euclidienne de a par b est 9) et b<43 (b<a et a+b=86), la seule possibilité est b=11 et par suite a=77. On vérifie que ces nombres conviennent effectivement.