corrigé de du Type Bac n°2

Proposition 1

Pour tout entier naturel n,

$$4\!\equiv\!1(3) \;\Rightarrow\; 4^n\!\equiv\!1(3) \;\Leftrightarrow\; (2^2)^n\!\equiv\!1(3) \;\Leftrightarrow\; 2^{2n}\!\equiv\!1(3) \;\Leftrightarrow\; 2^{2n}-1\!\equiv\!0(3) \;\Leftrightarrow\; 3|(2^{2n}-1)\;.$$

Donc la proposition 1 est vraie.

Proposition 2

 $2^2+2=6$ et $6\equiv 0(6)$ mais 2 n'est pas congru à 0 modulo 3. Donc la proposition 2 est fausse.

Proposition 3

On remarque que le couple (4+5;12+9) c'est-à-dire (9;21) est solution de l'équation 12x-5y=3. $9=4+10k \Leftrightarrow k=\frac{1}{2}$ donc le couple (9;21) n'appartient pas à l'ensemble proposé et les 2 ensembles ne coïncident donc pas. La proposition 3 est fausse.

Proposition 4

Quels que soient les entiers naturels a et b tels que a < b, on a $PGCD(a,b) \le a < b \le PPCM(a,b)$. On a donc b-a=1 ce qui prouve que a et b sont premier entre eux ($PGCD(a,b) \mid 1$ donc PGCD(a,b) = 1). Par suite, PPCM(a,b) = 2 et finalement a = 1 et b = 2. La proposition 4 est vraie.

Proposition 5

 $M = 100 \, a + 10 \, b + c$ et $N = 100 \, b + 10 \, c + a$ donc $M - N = 99 \, a - 90 \, b - 9 \, c = 9 \, (11 \, a - 10 \, b - c)$. Or $11 \equiv -1(3)$ et $-10 \equiv -1(3)$ donc $11 \, a - 10 \, b - c \equiv -a - b - c(3) \equiv -(a + b + c)(3)$. On sait que $27 \mid M = 10 \, b - c = 10 \, a + b + c = 10 \,$