corrigé de du Type Bac n°2

- a. On peut prendre (-2;1) car -2×23+1×47 = 1
 b. 23x+47y = 1 ⇔ 23x+47y = -2×23+1×47 ⇔ 23(x+2) = -47(y-1)
 Cette dernière équation implique 47 | 23(x+2) or 47 et 23 sont premiers entre eux donc d'après le théorème de Gauss 47 | (x+2) et il existe un entier k tel que x+2 = 47k ⇔ x = -2+47k. En remplaçant dans l'équation précédente, on obtient 23(47k) = -47(y-1) ⇔ y = 1-23k. On vérifie immédiatement que quel que soit l'entier k, le couple (-2+47k;1-23k) est solution de (E). C'est donc l'ensemble cherché.
 c. 23x = 1(47) équivaut à : Il existe un entier k tel que 23x = 1+47k ⇔ 23x+47(-k) = 1
 Donc d'après la question précédente x = -2+47k'. On cherche 0 < x < 47 ce qui amène à k' = 1 et donc x = 45.
- 2. a. 47 est premier, donc soit $47 \mid b$ et $b \equiv 0(47)$, soit $47 \nmid b$ et 47 est premier avec b. Dans ce cas, si $ab \equiv 0(47)$ c'est-à-dire si $47 \mid ab$ alors, d'après le théorème de Gauss, $47 \mid a$ et $a \equiv 0(47)$. Donc si $ab \equiv 0(47)$ alors soit $b \equiv 0(47)$ soit $ab \equiv 0(47)$.

 b. $a^2 \equiv 1(47) \Leftrightarrow a^2 1 \equiv 0(47) \Leftrightarrow (a-1)(a+1) \equiv 0(47)$ D'après la question précédente, soit $(a-1) \equiv 0(47) \Leftrightarrow a \equiv 1(47)$ soit $(a+1) \equiv 0(47) \Leftrightarrow a \equiv -1(47)$.
- 3. a. pq ≡ 1(47) équivaut à : Il existe un entier k tel que pq = 1+47k ⇔ pq+47(-k) = 1 .Or p∈A donc p est premier avec 47 et d'après le théorème de Bézout, il existe q et k tels que l'égalité soit vérifiée, ce qui répond à la question.
 b. p×inv(p) ≡ 1(47) donc p = inv(p) ⇔ p² ≡ 1(47) donc p ≡ 1(47) ⇔ p = 1 ou p ≡ -1(47) ⇔ p = 46.
 - c. A l'exception de 1 et 46, tous les éléments p de A ont un unique inverse distinct d'eux d'eux-même. L'ensemble $A \setminus \{1;46\}$ est donc formé de 22 paires de nombres $(a_i;inv(a_i))$ et donc, $46! = 1 \times a_1 \times inv(a_1) \times \times a_{22} \times inv(a_{22}) \times 46$. Par suite, $46! \equiv 1 \times 1 \times \times 1 \times -1(47) \equiv -1(47)$.