DEVOIR SURVEILLÉ N° 2

Nombres complexes et suites

Le 17 octobre 2014

Le plus grand soin doit être apporté aux calculs et à la rédaction. Soulignez ou encadrez vos résultats.

Exercice 1 (12 points)

Toutes les questions suivantes sont indépendantes.

1. Déterminer la forme algébrique des nombres complexes suivants :

a)
$$z_1 = -\frac{2}{3} + \frac{3}{2}i - (-2 + 3i)$$

c)
$$(\sqrt{3} - 5i)^2$$

b)
$$z_2 = (2-15i)\overline{(-8+i)}$$

d)
$$\frac{1-5i}{4-3i}$$

2. Le nombre z s'écrit sous la forme algébrique z=x+iy avec x et y deux réels. Si $z \neq i$, on pose $Z=\frac{z+1}{z-i}$.

Déterminer la forme algébrique de Z en fonction de x et y.

- 3. On veut résoudre l'équation à coefficients réels (E) : $z^3 7z^2 + 19z 13 = 0$.
 - a) Vérifier que 1 est une solution de l'équation (E) .
 - b) Déterminer les réels a et b tels que pour tout nombre complexe z, on ait $z^3-7\,z^2+19\,z-13=(z-1)(z^2+a\,z+b)\;.$
 - c) Déduire de ce qui précède les solutions de l'équation (E) .
- 4. Le plan complexe est rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) . Pour réaliser la figure, on prendra pour unité graphique $1\,cm$.

Soit A, B et C les points d'affixes respectives a, b et c où a=1, b=2+2i et c=1-i.

- a) Placer les points dans le plan complexe.
- b) Déterminer le module et un argument de $\frac{c}{b}$. En déduire la nature du triangle OBC .
- c) Que représente la droite (OA) pour le triangle OBC ? Justifier.
- d) On donne le point D d'affixe 2. Quelle est la nature du quadrilatère OCDB?

Exercice 2 (8 points) Antilles-Guyane, juin 2014

On considère la suite numérique (u_n) définie pour tout entier naturel n par

$$u_0 = 2 u_{n+1} = \frac{1}{5} u_n + 3 \times 0.5^n .$$

1. a) Recopier et, à l'aide de la calculatrice, compléter le tableau des valeurs de la suite (u_n) approchées à 10^{-2} près :

n	0	1	2	3	4	5	6	7	8
u_n	2								

- b) D'après ce tableau, énoncer une conjecture sur le sens de variation de la suite (u_n) .
- 2. a) Démontrer, par récurrence, que pour tout entier naturel n non nul on a $u_n > \frac{15}{4} \times 0.5^n$.
 - b) En déduire que, pour tout entier naturel n non nul, $u_{n+1}-u_n \le 0$.
 - c) Démontrer que la suite (u_n) est convergente.
- 3. On se propose, dans cette question de déterminer la limite de la suite (u_n) . Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n 10 \times 0.5^n$.
 - a) Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{5}$. On précisera le premier terme de la suite (v_n) .
 - b) En déduire, que pour tout entier naturel n , $u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0.5^n$.
 - c) Déterminer la limite de la suite (u_n) .
- 4. Recopier et compléter les lignes (1), (2) et (3) de l'algorithme suivant, afin qu'il affiche la plus petite valeur de n telle que $u_n \le 0.01$.

Entrée	n et u sont des nombres		
Initialisation	n prend la valeur 0 u prend la valeur 2		
Traitement	Tant que (1) n prend la valeur (2) u prend la valeur (3) Fin Tant que		
Sortie	Afficher n		