DEVOIR SURVEILLÉ N° 7

Calcul vectoriel dans l'espace et loi normale

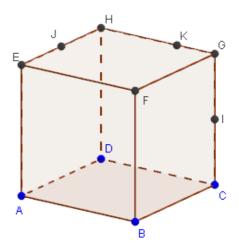
Le 11 avril 2016

Le plus grand soin doit être apporté aux calculs et à la rédaction. Soulignez ou encadrez vos résultats.

Exercice 1 (3 points)

Soit ABCDEFGH un cube, I le milieu de [CG], J le milieu de [EH] et K défini par : $\overline{GK} = \frac{1}{3}\overline{GH}$.

Montrer que les points A, I, J et K sont coplanaires.



Exercice 2 (3 points)

La droite Δ a pour représentation paramétrique : $\begin{cases} x = 1 - 3t \\ y = -2 + 2t \\ z = -1 - t \end{cases}$

- 1. Déterminer un vecteur directeur \vec{u} de Δ .
- 2. Justifier qu'il existe un point A de Δ d'abscisse 4.
- 3. La droite Δ passe-t-elle par le point B de coordonnées $\left(-10; \frac{16}{3}; -\frac{14}{3}\right)$?

Exercice 3 (3 points)

Dans $(O; \vec{i}; \vec{j}; \vec{k})$ un repère de l'espace, on a $\vec{u}(1;1;0)$, $\vec{v}(0;1;1)$, $\vec{w}(1;1;1)$ et A(2;1;0).

- 1. a) Montrer que $(O; \vec{u}; \vec{v})$ définit un plan. On notera \mathcal{P} ce plan.
 - b) Déterminer une représentation paramétrique de \mathcal{P} .
- 2. Déterminer l'intersection du plan $\mathscr P$ et de la droite $\mathscr D$ passant par A de vecteur directeur \overrightarrow{w} .

Exercice 4 (3 points)

Une société de livraison dépose régulièrement ses colis à la marie d'une ville.

Deux trajets sont possibles au livreur pour se rendre à la mairie. Après des relevés effectués sur plusieurs livraisons, le manager fait les propositions suivantes :

- On note X la variable aléatoire modélisant en minute la durée du trajet A. La variable aléatoire X suit une loi normale de paramètres 41 et 25 $(\mathcal{N}(41;25))$.
- On note Y la variable aléatoire modélisant en minute la durée du trajet B. La variable aléatoire Y suit une loi normale de paramètres 43 et 4 $(\mathcal{N}(43;4))$.

Les colis doivent être livrés avant 12 h afin que la société ne paye pas de pénalité.

- 1. En partant de l'entreprise à 11 h 16 min, quel trajet doit choisir le livreur pour avoir le plus de chance d'arriver à l'heure ?
- 2. En partant de l'entreprise à 11 h 15 min, quel trajet doit choisir le livreur pour avoir le plus de chance d'arriver à l'heure ?

Exercice 5 (4 points)

Sur une chaîne d'embouteillage dans une brasserie, la quantité x (en $c\ell$) de liquide fournie par la machine pour remplir chaque bouteille de contenance 83 $c\ell$, peut être modélisée par une variable aléatoire X de la loi normale de moyenne μ et d'écart-type $\sigma=2$.

- 1. Le directeur de la coopérative demande de régler la machine pour qu'il y ait moins de 1% de bouteilles qui débordent. Quelle est alors la valeur de μ ?
- 2. a) Quelle est, dans les conditions de la question 1, la probabilité que la bouteille contienne moins de 75 cl?
 - b) La législation imposant qu'il y ait moins de 0,1 % de bouteilles contenant moins de 75 c ℓ , la législation est-elle respectée ?

Exercice 6 (4 points)

Une entreprise emploie 220 salariés. La probabilité pour qu'un salarié soit malade une semaine donnée durant une période d'épidémie est égale à p=0.05.

On suppose que l'état de santé d'un salarié ne dépend pas de l'état de santé de ses collègues. On désigne par *X* la variable aléatoire qui donne le nombre de salariés malades une semaine donnée.

- 1. Justifier que la variable aléatoire *X* suit une loi binomiale dont on donnera les paramètres.
- 2. a) Calculer l'espérance mathématique μ et l'écart type σ de la variable aléatoire X.
 b) Justifier que cette loi binomiale peut être approchée par une loi normale dont on précisera les paramètres.
- On admet que l'on peut approcher la loi de la variable aléatoire ^{X-μ}/_σ par la loi normale centrée réduite, c'est-à-dire la loi normale de paramètres 0 et 1.
 On note Z une variable aléatoire suivant la loi normale centrée réduite.
 Le tableau suivant donne les probabilités de l'événement Z < x pour quelques valeurs du nombre réel x.

X	-1,55	-1,24	-0,92	-0,62	-0,31	0,00	0,31	0,62	0,93	1,24	1,55
p(Z < x)	0,061	0,108	0,177	0,268	0,379	0,500	0,621	0,732	0,823	0,892	0,939

Calculer, au moyen de l'approximation proposée, une valeur approchée à 10^{-2} près de la probabilité de l'événement : « le nombre de salariés absents dans l'entreprise au cours d'une semaine donnée est supérieur ou égal à 7 et inférieur ou égal à 15 ».