DEVOIR SURVEILLÉ N° 1

Suites et démonstration par récurrence

Le 27 septembre 2016

Exercice 1 (2 points)

On admettra l'inégalité de Bernoulli : « Soit un réel a strictement positif. Pour tout entier naturel n, $(1+a)^n \ge 1+na$ ».

- 1. Démontrer que pour q > 1, $\lim_{n \to +\infty} q^n = +\infty$.
- 2. En déduire $\lim_{n \to +\infty} \frac{4^n}{3^n + 1}$.

Exercice 2 (4 points)

Déterminer les limites des suites (u_n) suivantes :

1)
$$u_n = \frac{n^2 + 5n + 7}{2 - n}$$
 2) $u_n = 2 - n + (-1)^n$

2)
$$u_n = 2 - n + (-1)^n$$

$$3) u_n = \sin(\sqrt{n}) - n^2$$

Exercice 3 (4 points)

Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = \frac{3}{2}$ et $u_{n+1} = u_n^2 - 2u_n + 2$.

- 1. Calculer les valeurs exactes de u_1 et u_2 .
- 2. On admet que, pour tout entier naturel n, $1 < u_n < 2$.
 - a. Montrer que $u_{n+1}-u_n = (u_n-2)(u_n-1)$.
 - b. Déterminer le signe de $u_{n+1}-u_n$.
 - c. En déduire que la suite (u_n) est convergente. Peut-on déduire sa limite ?

Exercice 4 (3 points)

Pour chacune des informations suivantes, dire si elle est vraie ou fausse et justifier votre réponse. Une réponse non justifiée ne rapportera aucun point.

- 1. La suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{2n + \cos n}{n}$ est convergente vers 2.
- 2. Toute suite (v_n) à termes strictement positifs et décroissante, converge vers 0.
- 3. Toute suite (w_n) croissante diverge vers $+\infty$.

Exercice 5 (7 points)

Soit la suite numérique (u_n) définie sur l'ensemble des entiers naturels par $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = \frac{1}{5}u_n + 3 \times 0,5^n$.

1. a) Recopier et, à l'aide de la calculatrice, compléter le tableau des valeurs de la suite (u_n) approchées à 10^{-2} près :

n	0	1	2	3	4	5	6	7	8
u_n	2								

- b) D'après ce tableau, énoncer une conjecture sur le sens de variation de la suite (u_n) .
- 2. a) Démontrer, par récurrence, que pour tout entier naturel n non nul on a $u_n > \frac{15}{4} \times 0.5^n$.
 - b) En déduire que, pour tout entier naturel n non nul, $u_{n+1}-u_n < 0$.
 - c) Démontrer que la suite (u_n) est convergente.
- 3. On se propose, dans cette question de déterminer la limite de la suite (u_n) . Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n 10 \times 0.5^n$.
 - a) Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{5}$. On précisera le premier terme de la suite (v_n) .
 - b) En déduire, que pour tout entier naturel n, $u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0.5^n$.
 - c) Déterminer la limite de la suite (u_n) .
- 4. Recopier et compléter les lignes (1), (2) et (3) de l'algorithme suivant, afin qu'il affiche la plus petite valeur de n telle que $u_n < 0.01$.

Entrée	n et u sont des nombres			
Initialisation	n prend la valeur 0 u prend la valeur 2			
Traitement	Tant que (1) n prend la valeur (2) u prend la valeur (3) Fin Tant que			
Sortie	Afficher n			