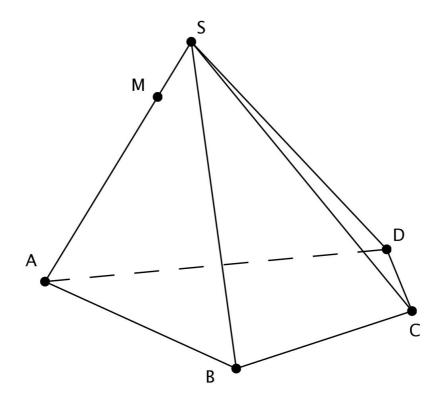
DEVOIR SURVEILLÉ N° 7	
Droites et plans dans l'espace, calcul intégral	Le 21 mars 2017

Le plus grand soin doit être apporté aux calculs et à la rédaction. Soulignez ou encadrez vos résultats.

Exercice 1 (6 points)

SABCD est une pyramide dont la base ABCD est un quadrilatère quelconque. M est un point du segment [SA]. Les constructions seront effectuées sur la figure ci-dessous.

- 1. Justifier que les droites (AB) et (CD) sont sécantes, puis construire en justifiant la droite d_1 , intersection des plans (SAB) et (SDC).
- 2. Construire en justifiant la droite d_2 , intersection des plans (SAD) et (SBC).
- 3. a) Justifier que les droites d_1 et d_2 définissent un plan que l'on note $\mathcal P$. b) On appelle $\mathcal P$ le plan parallèle à $\mathcal P$ passant par M. Construire l'intersection du plan $\mathcal P$ avec les plans (SAB), (SBC), (SDC) et (SAD). c) On appelle N, P et Q les intersections respectives de $\mathcal P$ avec (SB), (SC) et (SD). Quelle est la nature du quadrilatère MNPQ? Justifier la réponse.



Exercice 2 (3 points)

Déterminer une primitive des fonctions f suivantes sur l'intervalle I indiqué. On indiquera clairement la forme utilisée pour trouver cette primitive.

1)
$$f(x) = \frac{4}{(3x-1)^2}$$
; $I = \left[\frac{1}{3}; +\infty\right[$.

2)
$$f(x) = \frac{\ln x}{x}$$
; $I =]0; +\infty[$.

3)
$$f(x) = xe^{-x^2+2}$$
; $I = \mathbb{R}$.

Exercice 3 (3 points)

Calculer les intégrales suivantes en justifiant.

$$A = \int_0^2 \frac{3t}{t^2 - 1} dt$$

$$B = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos t \times \sin t \, dt$$

Exercice 4 (2 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + x - 2$.

Déterminer les réels dont l'image par f est égale à la valeur moyenne de f sur [0;2].

Exercice 5 (6 points)

Soient $I_0 = \int_0^1 e^{1-x} dx$, et pour tout entier naturel n supérieur ou égal à 1, $I_n = \int_0^1 x^n e^{1-x} dx$.

- 1. Calculer I_0 .
- 2. Donner une interprétation graphique du nombre $\,I_{\scriptscriptstyle 0}\,.$ On fera un graphique pour faire apparaître $\,I_{\scriptscriptstyle 0}\,.$
- 3. On admet que, pour tout entier naturel n, $I_{n+1}=(n+1)I_n-1$. Calculer I_1 et I_2 .
- 4. On donne le programme suivant :

Variables

 $\overline{N,X}$

Initialisation

 $0 \rightarrow N$

$$e-1 \rightarrow X$$

Traitement

Tant que N < 10 faire

$$(N+1)X-1 \rightarrow X$$

 $N+1 \rightarrow N$

FinTantque

Afficher X

- a) Que calcule ce programme?
- b) La valeur approchée de I_{10} est égale à 0,099 à 10^{-3} près. Quelle conjecture peut-on faire ?
- 5. a) Démontrer que pour tout réel x de [0;1] et pour tout entier naturel n non nul, on a l'inégalité : $x^n \le x^n e^{1-x} \le x^n e$.
 - b) En déduire un encadrement de I_n .
 - c) La suite (I_n) est-elle convergente?